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Abstract— This paper reviews methods of determining
whether several random number generators are suitable for
Monte Carlo simulations. The simulations are feature trans-
forms of high-dimensional spaces specifically in the context of
simulating Bridge deals. The authors identify two methods for
comparing experimental results from a Monte Carlo simulation
to either known theoretical probabilities or to results from other
simulations. In this paper, we apply these methods to several
deals from the game Bridge and compare certain statistics from
the bridge deals to known theoretical results.

I. INTRODUCTION

Random numbers are ubiquitous in daily life, from science
and cryptography to art, gambling, and gaming. Jurors are
randomly selected, scientific trials are randomized, and cards
are dealt. However, true random numbers are very difficult
to come by, especially when a large quantity of numbers
is necessary. Therefore, people use mathematical formulas
to create large amounts of random-looking (pseudo-random)
numbers very quickly. With all uses of generated "random"
numbers, it is important to be sure that the generated pseudo-
random numbers are as close to random as possible - even
indistinguishable from a random series of numbers.

There exist many tests for the randomness of a series of bits
or numbers, but frequently we encounter places where random
numbers have already been used (generated passwords, decks
of cards, or really anything that was randomly generated
without giving away the algorithm) and these earlier tests of
randomness aren’t useful.

For this paper, we’ve decided to use derived features of
Bridge deals as our black-box. The Bridge deals will be
randomly generated by several methods including using bits
from random number generator and open source software.
We have designed two experiments:
A zeroth-order probability test that simply compares the
means of a series of deals to the known population mean will
check for large-scale periodicity and statistical anomalies that
could occur because of poor generation of individual decks.
A test that compares short-term discrepancies between sample
values and cumulative values in a timeseries of decks will
check for any sort of auto-correcting or short-term periodic
behavior in a generator. This is more valuable for examining
bridge deals used in online games or tournaments, to make
the games more ’fair’ or more ’exciting’ than a truly random
deck would.

II. RELATED WORK

In order to generate large amount of relative random,
independent Bridge deals, we can rely on exist software. The
Big Deal [1] is one of them. It can accept the random keyboard

inputs and desired number of Bridge deals from user as initial
seed and output these deals. It is open-source software so
the design-of-art and implementation are all presented in the
website.

The Big Deal implemented its own pseudo random number
generator(PRNG). Normally the PRNG generates binary bits
and these binary bits are converted to Bridge deals. There
also exists other widely-using PRNG and true RNG. The
Mersenne Twister(MT) [2] is a very common and well-
tested PRNG. The Python random library is implemented
by using this PRNG. The Halton sequences [3] are low
discrepancy, multiple dimensions sequences for generating
random number. They generalise the one-dimensional van
der Corput sequences [4]. Except the pseudo random number
generator, we also have Intel random number generator [5]
by using thermal noise within CPU.

III. MODEL

Feature Probability Description
ls4 3.5080E-01 Length of longest suit = 4
ls5 4.4340E-01 Length of longest suit = 5
ls6 1.6548E-01 Length of longest suit = 6
ls7 3.5266E-02 Length of longest suit = 7
ls8 4.6680E-03 Length of longest suit = 8
ls9 3.7000E-04 Length of longest suit = 9

ls10 1.6464E-05 Length of longest suit = 10
ls11 3.6407E-07 Length of longest suit = 11
ls12 3.0000E-09 Length of longest suit = 12
ls13 6.0000E-12 Length of longest suit = 13
ss0 5.1066E-02 Length of shortest suit = 0 (aka void)
ss1 3.0550E-01 Length of shortest suit = 1 (aka singleton)
ss2 5.3800E-01 Length of shortest suit = 2
ss3 1.0540E-01 Length of shortest suit = 3
6-5 1.3564E-02 Distribution of suits in hand is 6-5-X-X
6-6 7.2300E-04 Distribution of suits in hand is 6-6-1-0
7-5 1.0850E-03 Distribution of suits in hand is 7-5-1-0
7-6 5.5646E-05 Distribution of suits in hand is 7-6-0-0
pă8 2.8585E-01 Total points in hand ă 8

p8-13 5.1540E-01 Total points in hand is in 8-13 inclusive
p14-18 1.7394E-01 Total points in hand is in 14-18 inclusive
p19+ 2.4813E-02 Total points in hand ą 19

Table (I) Features

We use a series of features of Bridge hands that are relevant
to Bridge players as a way of reducing the dimensionality of
a deck of cards (52) to a reasonable number (20) of features.
All these features are obtained by shuffling a deck using
the Fisher-Yates shuffle and then splitting it into 4 hands
(done by partitioning the deck). Note that each deck has 4
nonindependent hands for the purpose of increasing sample
sizes; however, this isn’t important in the large scheme of
things when working with millions of decks with the specific
tests here.



Feature P̃ badLCG goodLCG Halton MT RANDU vdc19 BCryptGen
ls4 3.5080E-01 3.2239E-01 3.5082E-01 3.5081E-01 3.5081E-01 3.5035E-01 2.5506E-01 3.5081E-01
ls5 4.4340E-01 4.4977E-01 4.4340E-01 4.4339E-01 4.4338E-01 4.4319E-01 5.4558E-01 4.4338E-01
ls6 1.6548E-01 1.7746E-01 1.6546E-01 1.6548E-01 1.6549E-01 1.6580E-01 1.7176E-01 1.6549E-01
ls7 3.5266E-02 4.3091E-02 3.5266E-02 3.5264E-02 3.5265E-02 3.5512E-02 2.6427E-02 3.5257E-02
ls8 4.6680E-03 6.4697E-03 4.6677E-03 4.6654E-03 4.6688E-03 4.7449E-03 1.1685E-03 4.6705E-03
ls9 3.7000E-04 8.2397E-04 3.7096E-04 3.7014E-04 3.7067E-04 3.8193E-04 0.0000E+00 3.6888E-04
ls10 1.6464E-05 0.0000E+00 1.6455E-05 1.6421E-05 1.6444E-05 1.7426E-05 0.0000E+00 1.6160E-05
ls11 3.6407E-07 0.0000E+00 3.5400E-07 3.4550E-07 3.7075E-07 4.0100E-07 0.0000E+00 3.6500E-07
ls12 3.0000E-09 0.0000E+00 3.0000E-09 3.0000E-09 3.7500E-09 5.7500E-09 0.0000E+00 5.0000E-09
ls13 6.0000E-12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
ss0 5.1066E-02 6.3141E-02 5.1061E-02 5.1065E-02 5.1067E-02 5.1057E-02 1.3961E-01 5.1070E-02
ss1 3.0550E-01 3.2712E-01 3.0555E-01 3.0554E-01 3.0553E-01 3.0578E-01 3.6810E-01 3.0554E-01
ss2 5.3800E-01 5.1846E-01 5.3803E-01 5.3803E-01 5.3805E-01 5.3796E-01 4.3946E-01 5.3803E-01
ss3 1.0540E-01 9.1278E-02 1.0536E-01 1.0536E-01 1.0535E-01 1.0521E-01 5.2827E-02 1.0537E-01
6-5 1.3564E-02 1.5015E-02 1.3561E-02 1.3566E-02 1.3567E-02 1.3585E-02 1.3196E-02 1.3569E-02
6-6 7.2300E-04 1.0681E-03 7.2343E-04 7.2328E-04 7.2344E-04 7.2295E-04 8.0895E-04 7.2231E-04
7-5 1.0850E-03 1.8921E-03 1.0840E-03 1.0850E-03 1.0860E-03 1.0900E-03 7.9988E-04 1.0827E-03
7-6 5.5646E-05 9.1553E-05 5.5375E-05 5.5661E-05 5.5647E-05 5.5392E-05 0.0000E+00 5.5827E-05
pă8 2.8585E-01 2.8421E-01 2.8585E-01 2.8585E-01 2.8584E-01 2.8572E-01 2.6511E-01 2.8585E-01
p8-13 5.1540E-01 5.1785E-01 5.1539E-01 5.1540E-01 5.1540E-01 5.1564E-01 5.4393E-01 5.1538E-01
p14-18 1.7394E-01 1.7343E-01 1.7395E-01 1.7394E-01 1.7394E-01 1.7389E-01 1.7866E-01 1.7396E-01
p19+ 2.4813E-02 2.4506E-02 2.4814E-02 2.4813E-02 2.4813E-02 2.4759E-02 1.2298E-02 2.4812E-02

Table (II) Theoretical means and experimental results

We use a series of features of Bridge hands that are relevant
to Bridge players as a way of reducing the dimensionality of
a deck of cards (52) to a reasonable number (20) of features.
All these features are obtained by shuffling a deck using
the Fisher-Yates shuffle and then splitting it into 4 hands
(done by partitioning the deck). Note that each deck has 4
nonindependent hands for the purpose of increasing sample
sizes; however, this isn’t important in the large scheme of
things when working with millions of decks with the specific
tests here.

These features and their probabilities given in table I.

Feature P̃ 3 Months 1 Year BigDeal
ls4 3.5080E-01 3.5012E-01 3.5044E-01 3.4957E-01
ls5 4.4340E-01 4.4482E-01 4.4532E-01 4.4582E-01
ls6 1.6550E-01 1.6554E-01 1.6511E-01 1.6395E-01
ls7 3.5300E-02 3.4580E-02 3.4285E-02 3.5662E-02
ls8 4.7000E-03 4.5188E-03 4.4521E-03 4.6006E-03
ls9 3.7000E-04 3.9758E-04 3.6149E-04 3.7773E-04
ls10 1.7000E-05 1.9394E-05 3.8052E-05 1.9371E-05
ls11 3.0000E-07 0.0000E+00 0.0000E+00 0.0000E+00
ls12 3.0000E-09 0.0000E+00 0.0000E+00 0.0000E+00
ls13 6.0000E-12 0.0000E+00 0.0000E+00 0.0000E+00
ss0 5.1200E-02 5.1986E-02 5.3082E-02 5.2020E-02
ss1 3.0550E-01 3.0596E-01 3.0394E-01 3.0784E-01
ss2 5.3800E-01 5.3713E-01 5.3573E-01 5.3507E-01
ss3 1.0540E-01 1.0492E-01 1.0725E-01 1.0507E-01
6-5 1.3560E-02 1.3556E-02 1.3680E-02 1.3734E-02
6-6 7.2000E-04 7.5637E-04 9.3227E-04 7.3609E-04
7-5 1.0900E-03 1.2897E-03 1.2177E-03 1.2591E-03
7-6 5.6000E-05 4.8485E-05 0.0000E+00 2.9056E-05
p<8 2.8585E-01 2.8496E-01 2.8476E-01 2.8479E-01
p8-13 5.1540E-01 5.1442E-01 5.1596E-01 5.1543E-01
p14-18 1.7394E-01 1.7616E-01 1.7416E-01 1.7556E-01
p19+ 2.4813E-02 2.4466E-02 2.5114E-02 2.4223E-02

Table (III) "Black box" data

IV. ZEROTH ORDER PROBABILITY TEST

We used five different random number generators of varying
quality and frequency of usage to simulate, in sequence, 1
billion deals of bridge for a given seed. Table II shows
the mean value of features across many deals. Any bolded
numbers are significant at 5σ to be different from the true
mean values. Notice that the intentionally bad PRNGs -
badLCG and vdc19 - fail greatly, while all of the ’good’
generators - goodLCG, Halton, MT, and BCryptGen - all
succeed. The interesting result is the RANDU generator,
which failed on several features. This suggests that there is a
quality in poorly made PRNGs that will cause this sort of
test to fail even if they don’t have a short period. It would be
interesting to see if other generators that are well-distributed
but fail the spectral test show similar behaviors.

Table III shows that all of the ’black box’ data that we’ve
received lies within acceptable bounds at a 5σ level.

V. DISCREPANCY TEST

A. Data Generation

We will generate totally nˆNˆmˆ t, n is feature number,
N is row number for first polling, m is row number for second
polling and t is number of data points after two polling for
each feature. Then we can plot the cumulative mass function
for each feature by using these t data points. In the simulation,
I choose N “ 20,m “ 32, t “ 640000 and n “ 22 is feature
number. Here, we give m another name–window size because
we take every m points in a time series and do polling. These
m points are within the “window".

In above plot, I did not include LCG-bad and one-year CMF
curve to simplify the plot. There are several distinguishable
observations among these plots. Firstly, in plot (a), the
cumulative mass function of Halton RNG is flatter than CMF
of other RNGs. For the lower part, the halton RNG CMF
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Figure (1) Interpolation for Data 1

Figure (2) Interpolation for Data 2

Figure (3) Interpolation for Data 1

Figure (4) Interpolation for Data 2

grows quicker than other RNGs, and for the upper part, the

halton RNG CMF grows slower than other RNGs. Secondly,
in both plot(a) and plot(b), the 3-month curve which is purple
one has more small jumps than other lines(they almost do not
jump). This observation is within expectation since we only
have limited real game data, that the increase step size of real
game curve will be larger than other RNGs’ curve. Although
the real game curve has more small jumps, according to the
plot(a), the overall shape is almost same as other RNGs’ curve
except halton RNG’s curve. Thirdly, in plot(c), all the CMF
jump from 0 to 1 at x“ 0. This kind of feature such as length
of longest suit == 12 is rare in the game. The probability is
approximate 10´9. Actually, this is an extreme situation that
we do not obverse any occurrence of this feature. For other
relative rare feature, we can obverse some occurrences. For
example, in plot(d) which is the CMF for feature longest suit
== 8, there is a jump for CMF from 0 to 0.6 at x“´0.0776.
The reason is that many data points do not obverse occurrence
of feature 4. x̄4 “ 0 in period of m. Therefore

x
1

4 “ avgprx̄14´ x̂4, ..., x̄m4´mˆ x̂4sq

Here m“ 32
“ avgpr´0.0047,´0.0096, ...,´0.1504q
“ ´0.0776

Other data points obverse occurrence of feature 4 for different
times, so the CMF increases step by step after the beginning
jump. If we increase the window size m, we have more
probability to view occurrence of feature. The jump at the
beginning of CMF will decrease. However since we only
have limited number of real data game, we want to make
sure there are enough data points to plot smooth real game
data curve. The window size m can not be large. The m“ 32
is a good value after trade-off.

B. Short-term timeseries Statistic Analysis

After generating the distributions, we apply several statistic
tests to analysis these data and probability distributions. The
statistic data provides more quantitative divergence than the
plots.

1) Binary Ratio Test: The each data point is the average
deviation from expected value among a sequence of bridge
deals. We use sign function to threshold the data points and
calculate the ratio of the number of `1 over the number of
total data points.

signpxq “

#

1 for xě 0
´1 for xă 0

The ratio should be close to 1
2 . The table IV shows the

result of the binary-test. For the most features, the results
are close to the 1

2 for each RNG and real games. For more



MT LCGbad LCGgood BIGDEAL Hardware HALTON 3_MON 1_YEAR diff1 diff2
ls4 0.494941 0.475594 0.489651 0.493626 0.494519 0.505118 0.469565 0.497561 0.035553 0.001314
ls5 0.497693 0.510736 0.502131 0.496925 0.497920 0.494513 0.506832 0.478049 0.032687 0.000995
ls6 0.484704 0.481938 0.488030 0.486901 0.485608 0.471498 0.501863 0.490244 0.030366 0.002197
ls7 0.458683 0.463377 0.460083 0.460516 0.458118 0.437518 0.460870 0.478049 0.040531 0.002398
ls8 0.353054 0.375487 0.351060 0.354280 0.352125 0.338543 0.332919 0.346341 0.042568 0.002155
ls9 0.046414 0.053707 0.045593 0.046893 0.046379 0.049112 0.050932 0.046341 0.008114 0.000514
ls10 0.002106 0.002441 0.001970 0.002116 0.002188 0.002798 0.002484 0.004878 0.002908 0.000081
ls11 0.000048 0.000000 0.000030 0.000046 0.000051 0.000090 0.000000 0.000000 0.000090 0.000005
ls12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ls13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ss0 0.461220 0.479984 0.463050 0.463006 0.460992 0.437308 0.458385 0.480488 0.043179 0.002014
ss1 0.492542 0.489264 0.497776 0.493995 0.493301 0.482909 0.505590 0.480488 0.025102 0.001453
ss2 0.500032 0.488772 0.498146 0.497700 0.499673 0.511379 0.478261 0.524390 0.046129 0.002333
ss3 0.479087 0.476566 0.475775 0.479292 0.478504 0.480237 0.453416 0.507317 0.053901 0.000787
6-5 0.439693 0.451164 0.439229 0.441487 0.440787 0.424758 0.432298 0.448780 0.026406 0.001794
6-6 0.085492 0.085453 0.084914 0.086049 0.085481 0.082779 0.091925 0.107317 0.024539 0.000568
7-5 0.121620 0.124997 0.124039 0.122353 0.121581 0.118128 0.141615 0.131707 0.023487 0.000772
7-6 0.007034 0.010254 0.006940 0.007331 0.007065 0.006889 0.006211 0.000000 0.010254 0.000296
p<8 0.499744 0.517095 0.499520 0.498191 0.500432 0.500799 0.501863 0.468293 0.048802 0.002241

p8-13 0.499431 0.483393 0.497233 0.501074 0.498277 0.497677 0.491925 0.502439 0.019046 0.002797
p14-18 0.495242 0.477536 0.496377 0.494212 0.495433 0.497140 0.556522 0.529268 0.078985 0.001221
p19+ 0.458771 0.486822 0.456570 0.456766 0.458873 0.457638 0.462112 0.463415 0.030252 0.002107

Table (IV) Ratio of binary output for different features

MT LCG-bad LCG-good BIG_DEAL HARDWARE HALTON 3_MONTH 1_YEAR
MT 0.000000 0.014270 0.004535 0.006230 0.005257 0.019311 0.023328 0.026211

LCG-bad 0.014270 0.000000 0.010375 0.014180 0.014982 0.027093 0.026853 0.031649
LCG-good 0.004535 0.10375 0.000000 0.005895 0.005255 0.019785 0.013528 0.024609

BIG_DEAL 0.006230 0.014180 0.005895 0.000000 0.005345 0.019689 0.023258 0.025709
HARDWARE 0.005257 0.014982 0.005255 0.005345 0.000000 0.018295 0.022318 0.024857

HALTON 0.019311 0.027093 0.019785 0.019689 0.018295 0.000000 0.031933 0.032759
3_MONTH 0.023328 0.026853 0.013528 0.023258 0.022318 0.031933 0.000000 0.035090
1_YEAR 0.026211 0.031649 0.024609 0.025709 0.024857 0.032759 0.035090 0.000000

Table (V) KL distance for each model with respect to other models

detailed observation, the similarity among MT, BigDeal and
Hardware are more precise than other RNG. We calculated
the difference(diff1 in the table IV) among the values of the
all RNGs for each features. And the difference(diff2 in the
table IV) for MT, BigDeal and Hardware. The diff2ď 0.0027
is much smaller than diff1ď 0.078

diff1" diff2

From the binary ratio test, we got the conclusion that the
MT, hardware and BigDeal generators agree with each other.
They might be good generators for bridge game.

2) Kullback–Leibler Divergence Test: The Kullback-
Leibler divergence [6] (also called relative entropy) is a
measure of how the given probability distribution is different
from the reference probability distribution. The following is
the equation of Kullback-Leibler divergence.

KKLpP||Qq “ ´
ÿ

xPχ

Ppxq log
ˆ

Qpxq
Ppxq

˙

The following table V shows the divergence between two
distributions. The bigger the value, the more divergence for
these CMF.

The KL distance agrees the observation and zeroth test
from previous section. In discrepancy test, we can not see any

difference among MT, LCG, big-deal and hardware curves.
Their KL distance is approximate 5ˆ 10´3. The 3-month
curve and 1-year curve have average 2ˆ10´2 distance from
above four curves. The Halton curve has average 1.36ˆ10´2

distance from above four curves and has average 3.23ˆ10´2.
From the Figure , the halton curve is above MT, LCG, big-
deal and hardware curves and 3-month curve is below four
of curves at first stage. And at second the halton curve and 3-
month reverse their position. Therefore, the distance between
halton curve and 4 curves is smaller than the distance between
halton curve and 3-month.

Among the KL distance, timeseries discrepancy test and
zero order test, there is one disagreement that the halton RNG
passes the zero order test but it does not pass all timesreies
discrepancy test.

C. Long-term timeseries Statistic Analysis

For short term timeseries, we only consider each data
point as a small period of time. For lone-term timeseries,
we will consider the time as a factor among the data points.
After including time stamp, we can farther evaluate the time
dependency of adjacent deals generated by different random
number generators.



Figure (5) Long-term timeseries for MT

Figure (6) Long-term timeseries for LCG-20

Figure (7) Long-term timeseries for LCG-25

Figure (8) Long-term timeseries for hardware RNG

I generated 64000000 deals of bridge. After the first polling
in short-term timeseries test, there remains 2,000,000 time
period. It is hard to show 2,000,000 data points, so we
did another average polling. Average polling will calculate
every contributes from each time period. It contains more
information than max polling. The following plots are time
series deviations from theoretical value for different RNGs’.

From figure6 and figure7, the LCG20 and LCG25 show
obvious periodic repetitions patterns. In long-term, the same
set of bridge deals will appear again and again. In real game,
we are not expected to see repeated set of deals. So we
get the same result that the LCG random number generator
family can not be used in bridge deal generation. For other
random number generator, they do not have the obvious

Figure (9) Long-term timeseries for BigDeal

pattern. Although LCG25 preforms good in short run, the
long-term test demonstrates the weakness of LCG25 RNG.
For other RNGs’, we can not observe clear pattern in the
graph. For further research, we can increase the bridge deals.
That more deals means we have more chance to go through
the scope of PRNG. After reaching the scope of PRNG, the
PRNG will start a new circulation. The last circulation should
be a period of pattern. What’s more, we can develop a model
to evaluate the randomness of deals respect to time. If we
can do some predictions to next few deals, we can conclude
the randomness is bad for this RNG. For now, I can conclude
the MT, BigDeal, halton PRNG and hardware real RNG are
good enough to generate bridge deals for the game.

VI. CONCLUSION

All of zero test, short-term/long-term timeseries discrep-
ancy test show a good PRNG can provide enough randomness
for Bridge deals generator. The Mersenne Twister and Bigdeal
has same performance as hardware RNG. If users want to let
the game more interesting, they can try using 52-dimension
Halton sequence as Bridge deal generator. It is still random
but there will be low discrepancy of one feature in a time
period of several deals. In other words, the specific feature
will distribute more evenly than other Bridge deal generator.
The LCG with higher exponent(25) has good performance
in short-term discrepancy test but it shows obvious pattern
in long-term discrepancy test. Three tests check different
features for each PRNG and real RNG.
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